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ON THE p-DIVISIBILITY OF FERMAT QUOTIENTS 

R. ERNVALL AND T. METSANKYLA 

ABSTRACT. The authors carried out a numerical search for Fermat quotients 

Qct = (aP- - 1)/p vanishing mod p, for 1 < a < p - 1, up to p < 106. This 
article reports on the results and surveys the associated theoretical properties 
of Qa. The approach of fixing the prime p rather than the base a leads to 
some aspects of the theory apparently not published before. 

1. INTRODUCTION 

For a fixed odd prime p and for a E Z \ p2, the integer 

(1) Qa = 

is called the Fermat quotient of a (or with base a). This quotient has been ex- 
tensively studied because of its links to numerous questions in number theory. 
To mention just one such link underlying several important problems, let wa, for 
1 < a < p - 1, denote the p-adic integer which is the (p - 1)st root of 1 congruent to 
a mod p. Then, for any m > 1, one has wa = a (mod pm+1) if and only if Qa= 0 
(mod pm) (see ?7). 

This article reports on our computations of Qa and reviews the current state 
of knowledge of the associated properties of this number. The main part of the 
computations consisted of a systematic search, up to p < 106, for all integers a in 
the range 1,... , p - 1 satisfying Qa 0 (mod p). The results on the whole seem to 
support the expected behavior of Qa. On the other hand, several interesting details 
appear. 

The article [3] by Brillhart, Tonascia and Weinberger reports thoroughly on the 
computations of Qa, particularly its vanishing mod p, until the end of the sixties. 
Later computational developments will be briefly summed up below in ?8. In all this 
previous work, Qa is considered from the point of view of a fixed base a, whereas 
we have adapted the approach of keeping p fixed. 

Theoretical results about Qa are scattered throughout the literature, many of 
them appearing in the work concerning Fermat's equation. A first comprehensive 
study of Qa was published in 1905 by Lerch [20]. A chronological summary of 
results prior to 1918 can be found in Dickson's history [6, Part I, Chapter IV] (see 
also Part II, Chapter XXVI). Many later results are surveyed in Ribenboim's book 

Received by the editor March 4, 1996 and, in revised form, May 22, 1996. 
1991 Mathematics Subject Classification. Primary 11A15, 11Y70; Secondary 11D41, 11R18. 
Key words and phrases. Fermat quotients, computation, Fermat's equation, Catalan's equa- 

tion, cyclotomic fields. 

(D1997 American Mathematical Society 

1353 



1354 R. ERNVALL AND T. METSANKYLA 

[24]. Granville [10, 11], besides proving new results, provides a review of known 
facts and open problems. 

Our discussion contains a simple result about the vanishing mod p, and more 
generally mod pm, of Qa and Qai+ (?5, ?7). There are also some other aspects and 
observations which may be known but to our knowledge have not been published 
in this form. 

In modern literature, Qa is usually denoted by qa. Since we are mostly concerned 
not with Qa but with its residue modulo p, we prefer to introduce the notation qa 

for the number defined by 

qa Qa (mod p), 0 < qa < p 

2. THE FERMAT QUOTIENT MATRIX 

Since qa = qp2?a, full information about qa can be obtained by letting a run 
through a half-system of reduced residue classes mod p2, say in the interval 0 < 
a < p2/2. The two tables below show qa in this range for p = 11 and p = 13 (in 
each row a runs through p - 1 consecutive integers). 

0 3 8 6 1 11 9 9 3 4 10 1 

10 10 7 7 9 
5 

5 
4 0 1 12 9 12 9 6 0 7 4 0 0 4 2 10 10 

3 
7 9 3 

8 
6 2 11 2 3 12 11 2 5 12 10 9 11 3 

8 9 4 4 0 2 1 8 1 1 4 10 8 7 2 3 4 3 7 7 5 5 4 
8 

9 
10 

4 
2 10 0 5 9 1 11 5 8 6 1 2 4 1 12 5 

7 3 6 4 3 
2 6 6 8 7 2 8 0 8 12 10 1 10 6 6 

6 8 2 6 6 7 0 6 11 5 10 

Often it is more illuminating, however, to look at qa for the whole system {a E 

Z\pZ I 0 < a < p2}, and we invite the reader to complete the above tables, simply 
by reflection, into the p x (p - 1) matrices corresponding to this system. Let us 
denote this matrix by Mp and call it the Fermat quotient matrix. 

From (1) it follows that 

(2) qa+kp -qa -ka-1 (mod p) 

for any k c 2, where a-1 denotes the inverse of a mod p. This gives the elements of 
each column of the matrix Mp as a function of any single element in that column. 
The column is a permutation of 0, . . . , p - 1 and it can be easily written down, 
without calculating a-1, once one element is known. 

Another basic property of qa, an immediate consequence of (1), is the "logarith- 
mic rule" 

(3) qab qa + qb (mod p). 

This together with (2) makes it possible to compile Mp, or its first row, with 
a minimal (if any) use of the computationally impractical formula (1). We will 
discuss this question in ?8. 

The integers a E Z \ p2 modulo p2 may be uniquely represented in the form 

(4) a--ru(I + p)v (mod p2), umodp-1, vmodp, 

where r is a fixed primitive root of p such that q, = 0. In fact, r and 1 + p mod p2 
generate the cyclic subgroups of order p - 1 and p, respectively, of G = (Z/p22) X 
(see [12, Part I, Chapter 4]. For any a satisfying (4), 

qa uqr + vql+p -v (mod p). 
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This shows, once again, that every number 0, ... ,p - 1 occurs p - 1 times in Mp. 
Note that all the residue classes a mod p2 with qa= 0 constitute the subgroup of 
order p - 1 in G, while those with qa = t, for each t E {1, .I. ,p - 1}, form a coset 
of this subgroup. 

The following proposition and its proof show that qa can be characterized, up to 
a constant factor, by (3) and the periodicity modulo p2. 

Proposition 1. If the function Z \ pZ -- 2/pZ, a | +Xa satisfies the conditions 

Xa = 
Xa+p2j Xab = Xa + Xb, Xi+p = -I +p2, 

then Xa = qa +PZ. 

Proof. Firstly, x1 = 0. Consider a mod p2 in the form (4). Since rP-1 _ 1 
(mod p2), we have -xr = x 0 = and, moreover, 

Xa VX= xl+p = -V + p = qa + PZ. * 

3. FIRST ROW OF THE MATRIX 

Problems related to qa most typically concern the zeros in the first row of the 
matrix Mp, that is, for a E Ip = {1,. . . , p - 1}. More generally, it is natural to ask 
about the distribution of the values of qa for a E 4p. 

The equal elements in the first row of Mp carry information about all the zeros 
in Mp in the following sense. Let a, b E 4p with 

(5) qa = qbi (a, b) =1 

note that the last condition is no actual restriction. Then, for any integer k- 
(mod p2), we have qk = 0 and q-k = 0. Conversely, for any integer k prime to p 
with qk = 0 there exist a, b E 4p satisfying (5) such that 

(6) k=- ab or k-a (mod p2). 

This was observed by Vandiver [31]. A nice proof can be obtained from Minkowski's 
theorem on linear forms (consider the forms p2x + ky and y). 

As a first consequence it follows (see [31]) that the number of different elements 

in the first row of Mp is at most [p- (p-1)/2] and at least [P], where the 

brackets denote the greatest integer function. 
For a given k prime to p, the pair of coprime integers a, b E 4p satisfying k a 

(mod p2) is necessarily unique. To see this, simply note that a congruence mod p2 
between two positive integers less than p2 must be an equality. 

It follows that, given k, there are at most two pairs a, b E Ip, with (a, b) = 1, 
such that (6) is true. As remarked by Coppersmith [4], there is only one such pair 
if one adds the condition a2 + b2 < p2. We point out that this is an immediate 
consequence of Lagrange's identity 

(ab' + a'b)2 = (a2 + b2)(a'2 + b'2) -(aa' - bb')2. 

Since the total number of zeros in Mp equals p - 1, one concludes from the last 
mentioned results the following: the number of primes 1 E 4p with a constant value 
of q, is less than p, and in the range 1 < 1 < [p/V'2] this number is even less than 

p/2. 
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Leaving out the assumption about the primality of 1 we have 

1 1 
card{a E Ip I qa = t} < p21log logp (t=O. . ., p-1), 

where the constant implied by < is absolute. A proof can be found in Fouche's 
article [8]; it combines a variant of the above argument with the prime number 
theorem. 

Granville [10] added some more sophisticated reasoning to prove that 

card {l < pl/U 1 prime, q, = 0} < Up/2U, 

whereu=1,2,... andu2u<p. 
In our computation we found all the zeros in the first row of Mp for every p 

below 106 and also for a few primes above this limit. For a fixed p, let z denote the 
number of these zeros. As expected, z is much less than V/j5 (except for p = 11). In 
the range p < 106 the values of z vary from 1 to 9, except that z = 11 for p = 1093 
and z = 12 for p = 3511. The. latter primes are the two Wieferich primes, i.e., 
primes with q2 = 0. 

Table I lists the primes p < 232 having a zero in the range 1 < a < 10. We 
used the table in [23] to complete this list of p and included all these primes in our 
computation, wishing to find as large sets of zeros, 

Z ={a E IIqa =? 

as possible. The second column of the table gives Z, with the prime factorization of 
each a (up to some trivial factorizations), and the third column records z = cardZ. 
The value z = 15 appearing in the table is the largest z we know. 

TABLE I. Vanishing qa, with some a in 2,... ,10, for p < 232. 

P Z z 
11 3 , n=-0, 1,2 3 

487 1n0, n = 0, 1, 2; 175 = 52 - 7; 307 5 
1093 2n, n = O. . .., 10 11 
3511 2nI n = 0 .., 11 12 

20771 5n n 0 O. ... , 6 7 
40487 5n n = 0 ..., 6; 4492 = 22 - 1123; 22460 =22 .5 .1123 9 
66161 6n, n 0= .., 6 7 

491531 7n n 0= ... ,6; 397783 = 17 -23399 8 
534851 6n, n 0= .., 7 8 

1006003 3fl n 0 ..., 12 13 
3152573 6n In 0= .., 8; 1693042 = 2 .132 .5009 10 

53471161 5n n r. 0 .. ,I11 12 
56598313 1OnO n = 0,.. .., 7 8 

1645333507 5n, n = 0, ..., 13; 1317772341 = 33 .19 2568757 15 

Call a subset Y of Z \ {1} independent if there is no relation qa = 0 with a E Y 
following by the logarithmic rule from the other relations qa = 0, a E Y. The 
largest independent set found by us occurs for p = 728,471. For this prime, z = 9 
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and the whole set 

Z \I{} ={36709, 159316 = 22 39829, 241830 = 2 . 32 .5. 2687, 288664 

- 23 36083, 418571 = 223 1877, 443653- 7 61. 1039, 653451 

- 3 . 67- 3251, 679977 = 32 . 75553} 

is independent. 
On the other hand, for a set Y not to be independent, the most frequent reason 

is that some element is a power of another. There is only one prime below 106 
providing a different example: for p = 40,487 one may take Y = {5, 4492, 5 4492} 
(see Table I). 

4. EQUIDISTRIBUTION OF FERMAT QUOTIENTS 

In a recent work [13], Heath-Brown obtains a result about the distribution of 
the values of qa. The idea is to consider the Dirichlet character X mod p2 given 
by x(a) = e 2riqa/P (for p t a) and to estimate the sum EM,<a<M+N Xh(a), where 
p t h. By using Burgess' estimate, Heath-Brown proves that 

E Xh(a) < N1/2p3/8 
M<a<M+N 

uniformly for M, N > 1. By Weyl's criterion this implies, on summing over primes 
p < X, that the sequence of the numbers qa/p with increasing p and a = 1, .. , p-I 
is uniformly distributed mod 1. The preceding upper bound can also be general- 
ized to N(s1l)/sp(s+1)/2s2, with any fixed integer s > 2 (personal communication). 
Letting s -+ oc one concludes that the finite set 

{qa/P I1 < a < NK1 

for any fixed prime p, is approximately uniformly distributed mod 1 if N > p2+ 

(with 6 > 0), the distribution tending closer to uniform as p -+ 00. 
This means that a set of values of qa, for 1 < a < N. behaves approximately like 

a set in which each number is randomly distributed in the range 0, . . . ,p - 1 (for 
N > p2+6). In particular, the effect of single relations between various qa is on a 
large scale negligible. 

Let wp(n) denote the probability that exactly n of p - 2 independent random 
choices of integers in {0, 1,... ,p - 1} turn out to be 0. Thus wp(n) is given by the 
binomial distribution: 

Wp(n) =p2 ( (- 

and approaches e-1/n! as p -+ oo. This is the Poisson distribution with mean 1. 
Now consider z - = card{a E Ip I a > 1, qa = 0}. Thinking of the numbers 
qa as "random" one may thus conjecture that, for each fixed n, the density of 
primes p with z - 1 = n is e-1/n!. In Table II we compare this conjecture with 
our computations up to 106. The second column of the table gives the number of 
primes p with a fixed z, denoted by mz. The total number of odd primes less than 
106 is 78,497. The observed and expected frequencies are seen to agree excellently. 
(By excluding the primes below some small bound one could come up with yet 
slightly better figures.) 

The last column in Table II indicates the least p belonging to a given z. 
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TABLE II. Distribution of primes p < 106 according to the number 
of vanishing qa- 

z = n 1 mZ mZ/78497 1/n!e Pmin 
1 28949 .3687... .3678 ... 3 
2 28936 .3686... .3678 ... 29 
3 14387 .1832... .1839 11 
4 4763 .0606... .0613 ... 269 
5 1178 .0150... .0153 ... 487 
6 216 .0027... .0030 ... 653 
7 59 .0007... .0005 ... 5107 
8 5 103291 
9 2 40487 

10 0 
11 1 1093 
12 1 3511 

TABLE III. Vanishing qa with 1 < a < Vj3 and 1 < a < Ca respectively. 

.1gj (pmaxi a) (p, a) (p, a) (p, a) 
1 63 91303,172 1093,2 29131,15 66431,40 
2 21 192047,141 

1093,4 33923,18 77867,37 

3 13 291721,323 1093,8 40487,5 123653, 12 3 13 283911,323 2693,12 40487,25 131759,45 
4 14 383951,92 3511,2 46021 17 160541,30 

6 13 5989675574 3511,4 46457,20 401771,63 
6 13 590967,747 3511,8 47441,33 491531,7 
7 9 691409,471 20771,5 48947, 17 491531,49 
8 8 795071,465 

20771,25 66161,6 534851,6 
9 7 880751,672 25633,24 66161,36 534851,36 

10 9 993913,675 661049,76 

In our range p < 106 we recorded the particular cases of q, = 0 with 1 < a < a, 
and also those with 1 < a < Vp. Data about these zeros are shown in Table III. 
There are 172 primes for which an a of the former kind exists; the first table shows 
their number, denoted by gj, in each subinterval A.3: (j - 1)105 < p < j . 105 
(j =1,. . . ,10). The third column exhibits, as a sample, the largest p in each A- 
together with the corresponding a (which happens to be unique). 

The second table lists the pairs (p, a) for which qa 0 0 and 1 < a < 
The tendency of a decreasing frequency of primes p in Table III can be explained 

simply by the fact that the share of these short ranges in the whole Ip tends to 
zero. In fact we conjecture that for any exponent is, with 0 < Ki < 1, the density of 
primes p for which there is some vanishing qua in the range 1 < a < p' is zero. This 
conjecture is supported by the Poisson model discussed above in connection with 
Table II and Heath-Brown's equidistribution results. 

A main motivation for the study of small a E Ip with qa = 0 has traditionally 
been the Fermat equation xP + yP = zP. It had been shown that the existence of a 
solution (x, y, z) with p t xyz would imply that q1 = 0 for all primes 1 = 2,3,..., L, 
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where the value of L was gradually increased. The latest result, due to Suzuki [28], 
has L 113. 

After this, it is natural to ask what can be said about the least a > 1, say a = dpi 
such that qa does not vanish. Note that dp is necessarily prime. Granville [10, 11] 
proved, as a slight improvement upon a result by Lenstra [19], that dp < log2 p. 

The main argument in both authors' works is again the simple fact that the total 
number of zeros in the matrix Mp is known; in addition, some analytical results 
about the distribution of prime numbers are required. 

Since any t E {O,...,p - 1} occurs p-I times in Mp, one expects a similar 
estimate for the number lp(t) = minfl I 1 prime, qp =A t}. Fouche [8] has indeed 

proved that 1p(t) < (1 ? o(1)) (2 logp)2 (p _ 0o) 
For dp one could obtain the weaker estimate dp < Vp- just by looking at elemen- 

tary properties of Mp. One proof for this inequality, under the restriction p _1 
(mod 4), is presented in [30]. 

It is likely that the true values of dp are much smaller than log2 p. A computation 
by Crandall, Dilcher and Pomerance [5] shows that dp < 3 up to p < 4. 1012, more 
precisely, dp = 2 in this whole range apart from the primes 1093 and 3511. 

Note also that Johnson [15] derives various conditions on p and a which ensure 
that qa =A 0. This gives him an easy way to generate a set of primes for which 
q2 04 O. The largest prime found by him exceeds 22 million. Unfortunately, it is not 
known whether one could by this method produce infinitely many such primes. 

5. CLOSE ZEROS 

If dp > 2, the first row of the matrix Mp begins with two zeros. One may ask, 
more generally, what are the possibilities for consecutive zeros, or zeros "close" to 
each other, in the rows of Mp. For a connection between the existence of consecutive 
zeros (in the first row Ip of Mp) and the theory of cyclotomic units, see [14]. 

Our computations reveal that for p < 106 there are no consecutive zeros in 
Ip other than those with a = 1 and a 2 for the two Wieferich primes. For just 
thirteen primes in this range there are two zeros, say a and a', with 0 < a'- a < 10. 
Nine of those primes can be found in Table I. The remaining four primes, together 
with the corresponding a and a', are the following: 

(269: 171, 180), (797: 440, 446), (24337: 20248, 20254), (56909: 10032, 10040). 

Looking at the entire matrix Mp rather than at its first row, we find that Mp 
certainly contains consecutive zeros for infinitely many primes. Indeed, we prove 
that such zeros exist whenever p _ 1 (mod 3). This result will be generalized to 
Qa mod pm in ?7. 

Proposition 2. If p =1 (mod 3), there exists a E Z, 1 < a < p2 - 1, such that 

(7) (a,p) = (a+ or,p) = 1, qa = qall = ?- 

Proof. Let r mod p2 denote a generator of the cyclic subgroup of (2/p2Z)X con- 
sisting of the solutions of the congruence xP-1-1 (mod p2) (see ?2). Choose a so 
that 

a-r(p-l)/3 (modp2), 1<a<p2. 
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Then a is prime to p and qa = 0. Also it follows that a3 - 1 (mod p2) and a 0 1 
(mod p2). Therefore, 1 < a < p2 - 1. Moreover, a 0 1 (mod p), since otherwise 
the condition qa = 0 would imply that a = 1. 

From the decomposition a3 -1 -(a - 1)(a2 + a + 1) we find that 

(8) a2+a+1-0 (modp2). 

Thus, a + 1 is prime to p and qa+i = q-a2 = qa2 = 0. D 

Unfortunately, we have a > p. Indeed, from a < p - 1 it would follow that 
a2 + a + 1 < p2, which contradicts (8). 

Along with a, also p2 _ a - 1 satisfies (7) and (8). 
The equations qa = qa+l = 0 also imply that q, = qc+ -_ 0, where c is the 

multiplicative inverse of a mod p2. This gives us a method for finding new pairs of 
consecutive zeros: on obtaining the pair (c, c + 1), normalized between 0 and p2, 

go to (p2 _ C - 1, p2 - c) and take again the inverse. It is likely that a satisfies 
some condition making this procedure terminate quickly. For example, if a is the 
number of the preceding proof, then c = p2 _ a-l and so no new pairs will turn 
up. 

6. FERMAT QUOTIENTS AND CATALAN'S EQUATION 

It has long been known that Fermat quotients are related to the existence of 
solutions of Catalan's equation 

(9) xP - yq -1 (p and q odd primes). 

We refer to [25] for a nice treatment of Catalan's equation. A result by Schwarz 
[27] in fact, the latest step in a series of similar results-asserts that (9) has 
no nontrivial integral solution if pq-1 0 1 (mod q2) and if there is an imaginary 
subfield of the pth cyclotomic field whose relative class number is prime to q. 

Since the roles of p and q can be interchanged, the "hardest" case occurs when 
p and q satisfy the simultaneous congruences 

(10) Pq -1 (mod q2), qP- 1 (mod p2). 

Our search shows that there are exactly three such pairs (p, q) with p and q below 
106: 

(4871, 83), (18787, 2903), (318917, 911). 

The first pair was found by Aaltonen and Inkeri [1], the two other pairs by Mignotte 
and Roy [21, 22]. 

In addition to these examples, the pairs (1006003, 3) and (1645333507, 5) are 
known to satisfy (10). These were observed in [1] and [23], respectively. Allowing 
the case q = 2 we have one further example in (1093, 2). 

It follows from Tijdeman's famous theorem [29] that any possible solution of 
(9) necessarily has xP and yq below an efficiently computable constant C. The 
currently known value of C is so large, however, that it is of no use in practical 
calculations. 
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7. FERMAT QUOTIENTS MODULO HIGHER POWERS OF p 

For any m > 1, the congruence 

(11) xP-_ 1 (mod pm+l) 

has p - 1 incongruent roots, and these roots are incongruent even mod p. In fact, 
the roots are x a + Ei=Z aip' (mod pm+1), with 1 <a <p - 1, where 

Wa aaip+a2p ?.2+ (O <ai<p -1) 
is the unique p-adic integer congruent to a mod p and satisfying wP-l = 1. 

Consequently, there are exactly p-I integers a E 2\pZ in the range 0 < a< pm+l 

such that Qa 0 (mod pm). 
The numbers Wa are important in many applications of p-adic numbers, par- 

ticularly in the theory of cyclotomic fields. The next proposition states one basic 
property of these numbers. 

Proposition 3. Let 1 < a < p-. Thenwa a (mod pm+l) if and only if Qa 0 
(mod pm). In particular, al- aQa (mod p). 

Proof. SinceWa -a (mod p) and wP= Wa, we have 

(12) wa- aP~ (modpm+l). 

Thus it suffices to prove that the congruences aP~ _ a (mod pm+l) and aP 
a (mod pm+l) are equivalent. That the latter congruence implies the former, is 
obvious. The converse implication is verified by raising the former congruence to 
the pth power and noting that aPm+l-P _ 1 (mod pm+l) 

The last assertion of the proposition follows from (12) for m = 1. [ 

The following result, quoted for m =1 in ?2, is a consequence of the structure 
of the group C - (2/pm+l2). The integers a E 2 \ pZ modulo pm+1 may be 
uniquely represented in the form 

a1-ru(1+p)v (mod pm+l), u mod p - 1, v mod pm, 

where r is a fixed primitive root of p such that Qr 0 (mod pm). Here r and 1 +p 
mod pm+1 generate the cyclic subgroups of order p - 1 and pm, respectively, of G. 

If p 1_ (mod 3), the group generated by r mod pm+1 contains a subgroup of 
order 3. Let a mod pm+1, with 1 < a< pm+l, be a generator of this subgroup. 
Since a is a root of (11), we have a g 1 (mod p) and an argument similar to that 
in the proof of Proposition 2 yields 

Qa Qa+i- 0 (mod pm). 

We point out that for m > 1 it may happen that this particular a can be chosen 
from the range 1 < a< pm. For instance, if p = 7 and m = 2, the residue class of 
18 mod 343 is such a generator. 

Specializing to the case m = 2 we have the question - interesting in view of 
Proposition 3, for example - about the solutions of 

(13) Qa 0 (modp2), 1 < a<p. 
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TABLE IV. Pairs (p, a) satisfying (14) with jkl < 5 or (15) with 
0 < b < 6, respectively. 

(p, a, k) (p, a, k) (p, a, k) 
. 

11,3,4 131,111,-5 1489,1211,-2 (p, a, b) (p, a, b) 
11,9, -3 211,165,5 2777,59,4 11,3,1 1847,189,2 
43,19, -5 241,94, -3 3889,1004,2 11,9,6 2693,12,1 
71,26, -2 577,427, -5 5857,3114,5 29,14,6 102451,22174,3 
103,43,4 641,340, -3 16091,7560, -5 113,68,0 252209,219571,6 
113,68,0 997,252,5 63533,27864,5 1601,1420,1 
131,58,1 1291,1148, -1 

According to Lenstra [19] one should expect that for a fixed a there be only finitely 
many primes p satisfying this congruence. Anyway, the occurrences of (13) seem 
extremely rare. An old example is p = 113, a = 68. Our computation shows that 
there are no further examples in the range p < 106. Montgomery [23], searching 
through a = 2,.. .,99 up to p < 232, did not find any new example either. 

We extended our numerical study to two kinds of congruences "close" to (13). 
The first is the congruence 

(14) Qa _ kp (mod p 2) 

with 1 < a < p and with small IkI. For p < 106, twenty pairs (p, a) satisfying this 
congruence for jkl < 5 were found, the largest p being 63,533. These are listed in 
Table IV (first table). It is no surprise that the number of examples is strongly 
declining as p increases. 

Our second study is related to the solutions of the congruence xP-1 1_ (mod p3) 

satisfying x _ a (mod p), where 1 < a < p and qa = 0. By the last assertion of 
Proposition 3, such solutions are of the form x _ a + bp2 (mod p3). One verifies 
easily that b _ aQa/p (mod p). If b can be taken a small positive number, we 
thus have a "small" positive solution of this special type for our congruence. This 
motivation leads us to search for pairs (p, a) such that 

(15) aQa _ bp (mod p2), 

where b > 0 is small. All the examples of this congruence for b < 6 and p below 
106 are presented in Table IV (second table). 

Among the few results about Qa mod pm with m > 1 appearing in the litera- 
ture, we would like to quote the following. Granville [9] finds a result about the 
congruences in (13), for a fixed a (prime) and for varying p, under some strong con- 
ditions imposed on the corresponding congruences mod p. E. Lehmer's article [18] 
relates Qa mod p2 to Bernoulli numbers by several congruences, with applications. 
Johnson [16] presents an algorithm for determining the exact power of p dividing 
Qa. 

8. THE COMPUTATIONS 

The computations were carried out on a Convex C3840 computer at CSC, the 
Center for Scientific Computing in Finland. The main part of the work, the location 
(and prime factorization) of all a in the range 2,... p- 1 with qa = 0, for p < 
106, took about 28 hours CPU time. No use was made of the parallel computing 
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feature of the machine. The programs were written in the language C. A table 
containing the complete results is available by anonymous FTP from ftp. utu. f i 
in the directory pub/f ermquot. 

We calculated qa for every a = 1, . . ., P 2 1, recording only the cases with either 
qa = 0 or qp-a = 0. Note that by (2) the latter condition is equivalent to the 
congruence aqa - -1 (mod p). To minimize the amount of computation mod 
p2 the program proceeded in cycles, passing from qa to q2a or, if 2a > P-1, to 
qp-2a. Hence, a computation mod p2 was required for just the first qa in each 
cycle. The number of cycles remains relatively small: it is 

- 
or P-1 , where d is d 2d' 

the order of 2 mod p. We had earlier developed and programmed this method of 
computing qa, without explicitly recording the results, as an intermediate step in a 
computation of cyclotomic invariants. This is described in [7], and the method has 
been subsequently applied in a computation extending to higher values of p (see [2] 
for work to p < 4 * 106). 

For the few single primes between 106 and 108 in Table I, the running time 
ranged from a few seconds to about an hour. For the largest prime, 1,645,333,507, 
the computation was arranged slightly differently. It required about 50 minutes, 
the number of cycles being three. 

As a check we verified, for each p > 3, the congruence 48 a=1 a2qa 1 
(mod p). This known formula follows easily via Bernoulli numbers Bl3: first compute 

P-1 P-1 

,2 E(P+1 _ a2) _= Bp+1- -2B- B2 ( p-aiq 1-i~ 
1 

12 (mod p), 

a=1 P a=1 

where use was made of the Kummer congruences mod p for Bn, and then pass to 
the half-sum by using (2). 

Once the table of the zeros of qa was finished, it did not take more than some 
seconds of machine time to find the "Catalan pairs" (p, q) and the special pairs 
(p, a) related to the behavior of Qa mod p2 

For a reader interested in computing by hand the Fermat quotient matrix for 
small p we point out that the above cycle method can then be much improved by a 
more efficient use of the logarithmic rule. For many primes there is no need at all 
for computation mod p2, if one employs the information provided by the first and 
last columns of Mp, known a priori. 

There exist numerous previous works tabulating zeros of qa. The tables typically 
have a fixed upper bound for a, whereas p may occasionally be very large. The table 
in [3] covers most of its predecessors; it extends over the range a < 100, the upper 
bound for p varying from 106 to 3 109. Montgomery [23] completes this table up 
to p < 232. A part of the new data given by him was earlier found by Keller [17]. 
For a < 150, there is a table by Riesel [26] extending to p < 104. A recent work by 
S. Shepherd settles the range 100 < a < 1000, p < 105 (personal communication). 
Aaltonen and Inkeri performed computations for a < 104, p < 104, restricting to 
prime values of a; their article [1] tabulates the results for a below 1000 (the table 
for 100 < a < 1000 is reprinted in [24, pp. 348-349]). 

When writing the present paper we learned that Mignotte and Roy had computed 
qP-l mod p2 for large sets of primes q and p. Part of their results appears in 
[21]. Currently they are extending the computation for all primes q < 105 and for 
p < M(q), where M(q) depends on q and is anyway to exceed lOOOq. 
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